Al trends 2026

5 Steps to Prepare Your Manufacturing
Data for Al

Introduction

Artificial Intelligence promises to revolutionize manufacturing operations, but success
hinges on one critical factor: data quality. In industrial environments, data comes from
diverse sourcesy, SCADA (Supervisory Control and Data Acquisition) systems, PLCs
(Programmable Logic Controller), MES (Manufacturing Execution System)

platforms, ERP (Enterprise Resource Planning) systems, and 10T (internet-of-things)
sensors, each with unique formats, frequencies, and quality levels. Before any Al
model can deliver value, this data must be properly prepared, cleansed, and
structured.

This guide walks you through five essential steps to prepare your manufacturing data
for Al implementation, drawing on proven practices from successful industrial Al
deployments.

01 02 083 04 05
Data Discovery Data Collection Data Quality Feature Data Validation
el and Assessment Engineering and Versioning
data landscape Centralization and Cleansing and Data a——
Building the data Transforming raw Transformation reproducibility and
foundation data into Al-ready Creating meaningful F:en:;l:r?z::

datasets inputs for Al models

Al trends 2026

Step 1: Data Discovery and Inventory Assessment

Understanding Your Data Landscape

Before cleaning data, you must know what you have. Manufacturing environments
typically contain dozens of data sources that have evolved over years or decades.

Key Activities:

« Map all data sources: Document every system generating data—sensors,
machines, quality systems, maintenance logs, production databases, and
manual entry points.

o ldentify data types: Classify data as time-series (sensor readings),
transactional (production orders), relational (product specifications), or
unstructured (operator notes, images).

e Assess data volume and velocity: Determine how much data each source
generates and at what frequency (milliseconds to daily).

o Evaluate current accessibility: Identify which systems are already integrated
and which exist in silos.

Real-World Example:

A automotive parts manufacturer discovered they had 47 different data sources
across three plants. Only 12 were integrated into their data lake. Critical quality
inspection data resided in Excel spreadsheets on individual quality engineer laptops.
This assessment revealed that 35% of potentially valuable Al training data was
inaccessible.

Best Practices:

o Use automated discovery tools to scan networks for databases and file shares

e Interview process operators and engineers to uncover manual data collection
processes

o Create a data catalog with metadata describing each source's purpose, owner,
and update frequency

o Document data lineage to understand how information flows between systems

Al trends 2026

Data Source HpeEs Integrated?
Frequency

SCHDA Time-series | seconds/minutes | Yes Operations

Systems

PLCs Time-series | ms-seconds Partial Engineering

MES Transactional | batch/continuous | Yes Production

ERP Transactional | batch/daily Partial IT

loT Sensors Time-series | ms-seconds \[o] Maintenance

Queiiyy Unstructured | variable \[o] Quality Eng

Spreadsheets '
Note:

System What it Does

Supervisory Control and Data Acquisition—monitors and controls

SCADA | . : ; :
industrial processes (e.g., plant operations, real-time sensors)

Programmable Logic Controller—controls machinery and processes at

PHE the equipment level (automation, logic, rapid response)

Manufacturing Execution System—manages and tracks production on
MES the shop floor, bridging the gap between machines and business
systems

Enterprise Resource Planning—integrates core business processes

Sl (finance, HR, supply chain, inventory, orders, scheduling)

Al trends 2026

Step 2: Data Collection and Centralization

Building Your Data Foundation

Al models require centralized access to data. Manufacturing data must be extracted
from operational technology (OT) systems and consolidated without disrupting
production.

Key Activities:

o Establish secure data pipelines: Implement extraction mechanisms that
don't impact real-time control systems. Use read-only database replicas or

historian APIs.

o Create a unified data platform: Deploy a data lake or lakehouse architecture
that can handle diverse data types and volumes.

e Implement time synchronization: Ensure all data sources use consistent
timestamps (critical for correlating events across systems).

e Set up continuous ingestion: Move from batch to streaming ingestion where
timing matters for Al predictions.

Real-World Example:

A food processing plant needed to predict equipment failures. Their challenge: PLC
data logged every second, vibration sensors logged every 100ms, and maintenance
records were entered weekly. They implemented a time-series database with edge
computing to downsample high-frequency sensor data to relevant features (peak
vibration, RMS values) before transmission, reducing data volume by 85% while
preserving predictive signals.

Architecture Considerations:

o Edge processing: Pre-process data at the source to reduce network load and
extract relevant features

o Data historians: Leverage existing industrial historians (OSlsoft PI, Aveva
Historian) as intermediaries

o Cloud vs. on-premise: Balance data gravity, latency requirements, and

security concerns
o Data governance: Implement access controls and audit trails from the start

Best Practices:

e Never extract data directly from production control systems—use mirrored
databases or historians

« Implement automated monitoring to detect pipeline failures or data delays

e Use industry-standard protocols (OPC UA, MQTT) for interoperability

« Build in data validation at ingestion to catch source system issues early

Al trends 2026

Step 3: Data Quality Assessment and Cleansing

Transforming Raw Data into Al-Ready Datasets

Industrial data is notoriously messy. Sensors fail, operators make typos, systems go
offline, and process changes aren't documented. This step is often the most time-
consuming but most critical.

Common Data Quality Issues in Manufacturing:

1. Missing values: Sensor outages, system maintenance, network interruptions

2. Outliers and anomalies: Sensor calibration drift, data entry errors, actual
process excursions

3. Inconsistent formats: Different units, varying precision, mixed data types

4. Duplicate records: System redundancy, batch processing errors

5. Temporal misalignment: Clock drift, daylight saving time, timezone issues

Cleansing Strategies:
For Time-Series Sensor Data:

e Missing values: Use forward-fill for short gaps (< 5 minutes), interpolation for
medium gaps, mark long gaps as explicit missing periods

o Outlier detection: Apply statistical methods (z-score, IQR) but validate
against process knowledge—some "outliers" are real production events

« Smoothing: Apply moving averages or filters to reduce noise, but preserve
important transients

« Resampling: Align data to consistent time intervals using appropriate
aggregation (mean for continuous values, last observation for state changes)

For Transactional/Event Data:

o Deduplication: Use composite keys (timestamp + machine ID + event type) to
identify duplicates

o Standardization: Convert all measurements to consistent units, normalize
product codes and naming

o Validation rules: Check referential integrity (all product IDs exist in master
data)

o Enrichment: Add contextual information (shift codes, product families,
seasonal factors)

Real-World Example:

A pharmaceutical manufacturer preparing data for batch quality prediction found that
23% of temperature sensor readings showed physically impossible values
(temperatures below absolute zero or above sensor limits). Investigation revealed
this happened when sensors were replaced, the new sensor ID wasn't updated in the
SCADA configuration. The solution: implement a sensor master data table and
automated validation rules that flagged impossible values immediately.

Al trends 2026

Best Practices:

o Create a data quality scorecard: Track metrics like completeness, validity,
consistency, and timeliness

o Distinguish between valid zeros and missing data: A machine running at O
RPM is different from a missing sensor reading

e Preserve raw data: Always keep original data and track all transformations

« Domain expertise is essential: Work with process engineers to understand
what's "normal” vs. truly anomalous

e Automate repetitive cleansing: Build reusable data pipelines that apply
standard transformations

« Version your datasets: Track which cleansing rules were applied to training
vs. test vs. production data

Typical Cause Detection Strategy Recommended Fix
Missing Outages, user error Completeness Interpolation, flag
Values checks gaps
Outliers Sensor drift, entry Z-score/IQR, Verlf_y, correct,
error domain persist
. . . : Remove,
Duplicates Batch ingestion Composite keys deduplicate
Misalignment | Timezone, drift Time checks REsEPIe, Sie
clocks
Inconsistency | Format/unit mix Validation rules bl ATl
normalize

Data Cleansing Checklist:

[] Document all assumptions and decisions made during cleansing
[] Validate cleansed data with subject matter experts
e [] Test cleansing logic on multiple time periods to ensure consistency
[] Monitor data quality continuously—don't assume it stays clean
[] Create data quality reports for stakeholders showing before/after metrics

Al trends 2026

Step 4: Feature Engineering and Data
Transformation

Creating Meaningful Inputs for Al Models

Raw sensor readings rarely provide optimal inputs for Al models. Feature
engineering transforms raw data into representations that expose patterns relevant to
your prediction targets.

Essential Manufacturing Features:
Temporal Features:

e Rolling statistics: Moving averages, standard deviations, min/max over time
windows

o Rate of change: Velocity and acceleration of process parameters

o Time-based: Hour of day, day of week, shift, time since last maintenance

o Lag features: Previous values to capture temporal dependencies

Aggregation Features:

o Statistical summaries: Mean, median, mode, quartiles across batches or
time periods

e Cycle metrics: Duration, peak values, integral (area under curve) for
production cycles

e Event counts: Number of alarms, operator interventions, recipe changes per
shift

Contextual Features:

e Product characteristics: Grade, family, complexity, material properties
o Operating modes: Startup, steady-state, shutdown, changeover
« Environmental: Ambient temperature, humidity, raw material lot

Domain-Specific Features:

« Equipment health indicators: Overall Equipment Effectiveness (OEE), Mean
Time Between Failures (MTBF)

e Process stability: Control chart statistics (Cp, Cpk), variation coefficients

o Material tracking: Lot genealogy, supplier characteristics, age of materials

Real-World Example:

A steel manufacturer building a quality prediction model initially used raw furnace
temperature readings. Model performance was poor. After consulting metallurgists,
the data science team engineered features based on domain knowledge:
temperature gradients, heating rate, time spent in specific temperature zones, and
cooling rate profiles. These physics-informed features improved prediction accuracy
from 67% to 91%.

Al trends 2026

Transformation Techniques:

Scaling and Normalization:

Standardization: Zero mean, unit variance—useful for algorithms sensitive to
scale (neural networks, SVM)

Min-Max scaling: Scale to [0,1] range—preserves zero values, good for
bounded data

Robust scaling: Uses median and IQR—Iess sensitive to outliers

Encoding Categorical Variables:

One-hot encoding: For nominal categories (product type, machine ID)
Ordinal encoding: For ordered categories (quality grade: A, B, C)

Target encoding: Replace category with target variable mean—powerful but
risk of overfitting

Dimensionality Reduction:

PCA: Reduce correlated sensor readings to principal components
Feature selection: Use domain knowledge or statistical tests to remove
irrelevant features

Aggregation: Combine related sensors into composite indicators

Best Practices:

Start with domain knowledge: Consult process engineers before algorithmic
feature selection

Validate feature relevance: Use correlation analysis, feature importance
scores, and SHAP values

Avoid data leakage: Never include information not available at prediction time
Document feature definitions: Create a feature dictionary explaining
calculation logic and business meaning

Version your features: Track feature engineering changes as you iterate
Test feature stability: Ensure features remain meaningful across different
time periods and production conditions

Feature Engineering Workflow:

Nouoh,swhE

Generate candidate features based on domain knowledge
Calculate features across your dataset

Analyze feature distributions and correlations

Remove redundant or low-variance features

Validate with subject matter experts

Test features with simple models before complex ones
Refine based on model performance and interpretability

Al trends 2026

Step 5: Data Validation and Versioning

Ensuring Reproducibility and Production Readiness

Proper validation and versioning transform a data science experiment into a
production-ready Al system.

Data Splitting Strategy:

Manufacturing data requires careful splitting due to temporal dependencies and
production realities:

o Time-based splitting: Train on historical data, validate on intermediate
period, test on most recent data

o Stratification: Ensure all product types, operating conditions, and failure
modes are represented

« Hold-out production data: Reserve recent data completely unseen by the
model development team

Avoid these common mistakes:

Random splitting of time-series data (causes data leakage)
Testing on data from the same production period as training
Ignoring seasonal or campaign-based production patterns

Real-World Example:

A packaging line predictive maintenance model showed 95% accuracy during
development but failed in production. Root cause: the model was trained on data
from steady-state production but deployed during a plant modernization period with
new equipment and operators. The lesson: test data must represent deployment
conditions, not just historical norms.

Data Validation Checks:
Statistical Validation:

« Distribution checks: Compare train/validation/test distributions to detect drift

« Temporal consistency: Verify no future information leaks into training data

« Balance checks: Ensure sufficient examples of minority classes (rare failures,
guality issues)

o Correlation stability: Verify key relationships remain consistent across splits

Production Readiness Validation:

e Latency testing: Confirm data can be fetched and processed within required
timeframes

e Completeness simulation: Test model performance when real-time data has
missing values

Al trends 2026

o Adversarial testing: Inject realistic data quality issues to test robustness
o Cross-plant validation: If deploying across facilities, test on data from
different locations

Data Versioning Best Practices:

Manufacturing Al projects evolve—equipment changes, processes improve, quality
standards tighten. Versioning ensures reproducibility and enables debugging.

What to Version:

« Raw data snapshots: Periodic snapshots of source data

« Cleansing configurations: Scripts, rules, parameters used for data
preparation

o Feature definitions: Code and documentation for feature engineering

o Dataset versions: Final train/validation/test splits with metadata

o Data quality reports: Metrics and issues identified in each version

Version Control Tools:

« DVC (Data Version Control): Git-like versioning for large datasets

o MLflow: Track datasets alongside models and experiments

o Delta Lake/Apache Iceberg: ACID transactions and time travel for data lakes
o Custom solutions: Combine git for code with cloud object versioning for data

Metadata to Track:

« Date range of data

« Data sources included

o Cleansing and transformation steps applied

o [Feature engineering logic version

« Data quality metrics

o Number of records, features, and target distribution
e Known issues or limitations

Real-World Example:

A chemical plant's corrosion prediction model performance degraded six months after
deployment. Because they version-controlled their data pipeline, the team could
replay data processing with different historical periods. They discovered a sensor
calibration change that altered the scale of a critical feature. With version control,
they identified the issue in days rather than weeks and retrained the model
appropriately.

Production Monitoring:
Data preparation doesn't end at deployment. Implement continuous monitoring:

o Data drift detection: Track when input data distributions change significantly
o Feature stability: Monitor for sudden changes in feature values or availability

Al trends 2026

o Data quality metrics: Continuously measure completeness, validity, and
timeliness

o Automated alerts: Trigger notifications when data quality falls below
thresholds

e Retraining triggers: Define conditions that require model retraining

Best Practices:

e Automate everything: Manual steps don't scale and introduce errors

« Document assumptions: Explicitly state what you assume about data
characteristics

o Peer review: Have another engineer review your data preparation logic

o Establish feedback loops: Track model performance and trace issues back
to data preparation

o Plan for evolution: Design your pipeline to accommodate new data sources
and features

e Maintain audit trails: Log all data access and transformations for compliance

and debugging
Raw Data Snapshots Save original, document range
Cleansing Configurations Track logic, rules, versions
Feature Definitions Document and code
Final Dataset Splits Save splits with metadata
Data Quality Reports Record metrics/issues per version

Al trends 2026

Time Spent on Manufacturing Al
Projects

75%

~ Data Preparation ~ * Modeling/Training = Deployment

Conclusion: From Data to Deployable Al

Preparing manufacturing data for Al is neither quick nor glamorous, but it's the
foundation of successful Al implementations. Industry practitioners estimate that 60-
80% of Al project time is spent on data preparation—and for good reason. Poor data
quality is the most common reason for Al project failures in manufacturing.

Key Takeaways:

Invest in discovery: Understand your data landscape before extraction
Centralize thoughtfully: Balance accessibility with operational safety

Clean systematically: Use domain knowledge to guide data quality decisions
Engineer meaningful features: Transform raw data into representations that
expose relevant patterns

Version and validate: Build reproducibility and production readiness from the
start

PwNE

o

Getting Started:
Begin with a focused pilot project:

Choose a specific use case with clear business value
Identify the critical data sources for that use case

Apply these five steps systematically

Document lessons learned and build reusable components

Al trends 2026

e Scale successful patterns to additional use cases

Manufacturing Al success stories aren't built on sophisticated algorithms alone—
they're built on high-quality, well-prepared data. By following these steps, you'll
create the foundation for Al systems that deliver genuine business value in
production environments.

Additional Resources

Industry Standards:

e [ISA-95: Integration of enterprise and control systems
e« OPC UA: Interoperability standards for industrial automation
« MIMOSA: Machine information management open systems alliance

Tools and Frameworks:

Apache Kafka: Real-time data streaming
Apache Spark: Large-scale data processing
Pandas: Data manipulation in Python

Great Expectations: Data validation framework

Further Reading:

"Building Machine Learning Powered Applications" by Emmanuel Ameisen
"Designing Data-Intensive Applications" by Martin Kleppmann
o "Feature Engineering for Machine Learning" by Alice Zheng & Amanda Casari

